IXG(A,P,H)30N120B3 Datasheet by IXYS

:I IXYS
© 2009 IXYS CORPORATION, All Rights Reserved
Symbol Test Conditions Characteristic Values
(TJ = 25°C, Unless Otherwise Specified) Min. Typ. Max.
BVCES IC = 250μA, VGE = 0V 1200 V
VGE(th) IC = 250μA, VCE = VGE 3.0 5.0 V
ICES VCE = VCES, VGE = 0V 100 μA
TJ = 125°C 1 mA
IGES VCE = 0V, VGE = ±20V ±100 nA
VCE(sat) IC = 30A, VGE = 15V, Note 1 2.96 3.5 V
TJ = 125°C 2.95 V
DS99730B(10/09)
VCES = 1200V
IC110 = 30A
VCE(sat)
£ 3.5V
tfi(typ) = 204ns
GenX3TM 1200V
IGBTs
High-Speed Low-Vsat PT
IGBTs 3-20 kHz Switching
Features
zOptimized for Low Conduction and
Switching Losses
zSquare RBSOA
zInternational Standard Packages
Advantages
zHigh Power Density
zLow Gate Drive Requirement
Applications
zPower Inverters
zUPS
zMotor Drives
zSMPS
zPFC Circuits
zWelding Machines
IXGA30N120B3
IXGP30N120B3
IXGH30N120B3
Symbol Test Conditions Maximum Ratings
VCES TC = 25°C to 150°C 1200 V
VCGR TJ = 25°C to 150°C, RGE = 1MΩ 1200 V
VGES Continuous ± 20 V
VGEM Transient ± 30 V
IC25 TC = 25°C 60 A
IC110 TC = 110°C 30 A
ICM TC = 25°C, 1ms 150 A
SSOA VGE = 15V, TVJ = 125°C, RG = 5Ω ICM = 60 A
(RBSOA) Clamped Inductive Load VCE VCES
PCTC = 25°C 300 W
TJ - 55 ... +150 °C
TJM 150 °C
Tstg - 55 ... +150 °C
TL1.6mm (0.062 in.) from Case for 10s 300 °C
TSOLD Plastic Body for 10 seconds 260 °C
MdMounting Torque (TO-220 & TO-247) 1.13/10 Nm/lb.in.
Weight TO-263 2.5 g
TO-220 3.0 g
TO-247 6.0 g
G = Gate C = Collector
E = Emitter Tab = Collector
TO-220 (IXGP)
TO-263 (IXGA)
G
E
GCE
TO-247 (IXGH)
GCE
C (Tab)
C (Tab)
C (Tab)
mwnm m hump: my. S Y m
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXGA30N120B3 IXGP30N120B3
IXGH30N120B3
Symbol Test Conditions Characteristic Values
(TJ = 25°C, Unless Otherwise Specified) Min. Typ. Max.
gfs IC= 30A, VCE = 10V, Note 1 11 19 S
Cies 1750 pF
Coes VCE = 25V, VGE = 0V, f = 1MHz 120 pF
Cres 46 pF
Qg 87 nC
Qge IC= 30A, VGE = 15V, VCE = 0.5 VCES 15 nC
Qgc 39 nC
td(on) 16 ns
tri 37 ns
Eon 3.47 mJ
td(off) 127 200 ns
tfi 204 380 ns
Eoff 2.16 4.0 mJ
td(on) 18 ns
tri 38 ns
Eon 6.70 mJ
td(off) 216 ns
tfi 255 ns
Eoff 5.10 mJ
RthJC 0.42 °C/W
RthCS TO-220 0.50 °C/W
RthCS TO-247 0.21 °C/W
Inductive load, TJ = 25°°
°°
°C
IC = 30A, VGE = 15V
VCE = 0.8 VCES, RG = 5Ω
Notes 2
Inductive load, TJ = 125°°
°°
°C
IC = 30A,VGE = 15V
VCE = 0.8 VCES,RG = 5Ω
Notes 2
IXYS MOSFETs and IGBTs are covered 4,835,592 4,931,844 5,049,961 5,237,481 6,162,665 6,404,065 B1 6,683,344 6,727,585 7,005,734 B2 7,157,338B2
by one or moreof the following U.S. patents: 4,850,072 5,017,508 5,063,307 5,381,025 6,259,123 B1 6,534,343 6,710,405 B2 6,759,692 7,063,975 B2
4,881,106 5,034,796 5,187,117 5,486,715 6,306,728 B1 6,583,505 6,710,463 6,771,478 B2 7,071,537
Notes:
1. Pulse test, t 300μs, duty cycle, d 2%.
2. Switching times & energy losses may increase for higher VCE(Clamp), TJ or RG.
Pins: 1 - Gate 2 - Drain
3 - Source 4 - Drain
TO-220 (IXGP) Outline
TO-247 (IXGH) AD Outline
1 = Gate
2 = Collector
3 = Emitter
TO-263 (IXGA) Outline
1. Gate
2. Collector
3. Emitter
4. Collector
Bottom Side
Dim. Millimeter Inches
Min. Max. Min. Max.
A 4.06 4.83 .160 .190
b 0.51 0.99 .020 .039
b2 1.14 1.40 .045 .055
c 0.40 0.74 .016 .029
c2 1.14 1.40 .045 .055
D 8.64 9.65 .340 .380
D1 8.00 8.89 .280 .320
E 9.65 10.41 .380 .405
E1 6.22 8.13 .270 .320
e 2.54 BSC .100 BSC
L 14.61 15.88 .575 .625
L1 2.29 2.79 .090 .110
L2 1.02 1.40 .040 .055
L3 1.27 1.78 .050 .070
L4 0 0.13 0 .005
vcg=15v \ 13v 50 w m / c mm g / 5 av E ‘2'ii47 ii iii Em S <( l="" _‘u="" e10="" 20="">3 // // N m ”a \ \ 5v 0 ‘ [IE on 05 m ‘5 20 25 30 35 40 45 so 750 VCEVVOKS 7 5 E m e5 S’ \ A 30A \ , \\\ 3 m 2 //% a 7 a 9 m u ‘2 ‘ VGEVVOHS © 2009 IXVS CORPOHA‘HON‘ AH ngms Reserved
© 2009 IXYS CORPORATION, All Rights Reserved
IXGA30N120B3 IXGP30N120B3
IXGH30N120B3
Fig. 1. Output Characteristics @ T
J
= 25ºC
0
10
20
30
40
50
60
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
V
CE
- Volts
I
C
- Amperes
9V
7V
V
GE
= 15V
13V
11V
Fig. 2. Extended Output Characteristics @ T
J
= 25ºC
0
20
40
60
80
100
120
140
160
180
200
0 3 6 9 12 15 18 21 24 27 30
V
CE
- Volts
I
C
-
Amperes
V
GE
= 15V
7V
11V
9V
13V
Fig. 3. Output Characteristics @ T
J
= 125ºC
0
10
20
30
40
50
60
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
V
CE
- Volts
I
C
- Amperes
7V
9V
V
GE
= 15V
13V
11V
5V
Fig. 4. Dependence of V
CE(sat)
on
JunctionTemperature
0.6
0.8
1.0
1.2
1.4
1.6
-50 -25 0 25 50 75 100 125 150
T
J
- Degrees Centigrade
V
CE(sat)
- Normalized
V
GE
= 15V I
C
= 60A
I
C
= 30A
I
C
= 15A
Fig. 5. Collector-to-Emitter Voltage vs.
Gate-to-Emitter Voltage
2
3
4
5
6
7
8
6 7 8 9 10 11 12 13 14 15
V
GE
- Volts
V
CE
- Volts
I
C
= 60
A
T
J
= 25ºC
30
A
15
A
Fig. 6. Input Admittance
0
10
20
30
40
50
60
4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5
V
GE
- Volts
I
C
-
Amperes
T
J
= 125ºC
25ºC
- 40ºC
VGE « V0”: 9.5- Swemens \c >Amperss 3 '3 g 1,000 3 m 2: § g E 3 , 7 0 § mo ‘ m u m Fig. 11. Maximum Transient Therm mu 3 9 'g cm 5 am 00001 com u m Pulse Wmth»52conds IXVS Reserves the nghl to Change meHS, Test Condmans, and Dimensions.
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXGA30N120B3 IXGP30N120B3
IXGH30N120B3
Fig. 11. Maximum Transient Thermal Impedance
0.01
0.10
1.00
0.0001 0.001 0.01 0.1 1 10
Pulse W idth - Seconds
Z
(th)JC
- ºC / W
Fig. 7. Transconductance
0
4
8
12
16
20
24
0 10203040506070
I
C
- Amperes
g
f s
-
Siemens
TJ
= - 40ºC
25ºC
125ºC
Fig. 10. Reverse-Bias Safe Operating Area
0
10
20
30
40
50
60
70
200 300 400 500 600 700 800 900 1000 1100 1200
V
CE
- Volts
I
C
- Amperes
TJ
= 125ºC
RG = 5
dv / dt < 10V / ns
Fig. 8. Gate Charge
0
2
4
6
8
10
12
14
16
0 102030405060708090
Q
G
- NanoCoulombs
V
GE
- Volts
VCE
= 600V
I C = 30A
I G = 10mA
Fig. 9. Capacitance
10
100
1,000
10,000
0 5 10 15 20 25 30 35 40
V
CE
- Volts
Capacitance - PicoFarads
f
= 1 MHz
Cies
Coes
Cres
14 we v a v m w % Va n: 12 we 15 33a 5 . Em m2 5 2 22,3 33% S .%m Rgr Ohms use m m 420 #583252 5 _ 2m: 220 <4 1="" $33="" 2="" .em="" 55="" 25="" 425="" 375="" “58$sz="" 5="" z="" 325=""><75><25 450="" :="" :5:="" #58325:="" l.="" 150="" ©="" 2009="" ixvs="" corpoha‘hon‘="" ah="" ngms="" reserved="">
© 2009 IXYS CORPORATION, All Rights Reserved
IXGA30N120B3 IXGP30N120B3
IXGH30N120B3
Fig. 12. Inductive Switching
Energy Loss vs. Gate Resistance
2
4
6
8
10
12
14
16
18
5 7 9 1113151719212325
R
G
- Ohms
E
off
- MilliJoules
4
6
8
10
12
14
16
18
20
E
on
- MilliJoules
E
off
E
on
- - - -
T
J
= 125ºC , V
GE
= 15V
V
CE
= 960V
I
C
= 60A
I
C
= 30A
Fig. 17. Inductive Turn-off
Switching Times vs. Junction Temperature
125
175
225
275
325
375
425
25 35 45 55 65 75 85 95 105 115 125
T
J
- Degrees Centigrade
t
f
- Nanoseconds
100
130
160
190
220
250
280
t
d(off)
- Nanoseconds
t
f
t
d(off)
- - - -
R
G
= 5
, V
GE
= 15V
V
CE
= 960V
I
C
= 60A, 30A
Fig. 15. Inductive Turn-off
Switching Times vs. Gate Resistance
220
260
300
340
380
420
460
5 7 9 1113151719212325
R
G
- Ohms
t
f
- Nanoseconds
50
150
250
350
450
550
650
t
d
(
off
)
- Nanoseconds
t
f
t
d(off)
- - - -
T
J
= 125ºC, V
GE
= 15V
V
CE
= 960V
I
C
= 60A
I
C
= 30A
Fig. 13. Inductive Switching
Energy Loss vs. Collector Current
0
2
4
6
8
10
12
14
16
15 20 25 30 35 40 45 50 55 60
I
C
- Amperes
E
off
- MilliJoules
0
2
4
6
8
10
12
14
16
E
on
- MilliJoules
E
off
E
on
- - - -
R
G
= 5
,
V
GE
= 15V
V
CE
= 960V
T
J
= 125ºC
T
J
= 25ºC
Fig. 14. Inductive Switching
Energy Loss vs. Junction Temperature
0
2
4
6
8
10
12
14
25 35 45 55 65 75 85 95 105 115 125
T
J
- Degrees Centigrade
E
off
- MilliJoules
2
4
6
8
10
12
14
16
E
on
- MilliJoules
E
off
E
on - - - -
R
G
= 5
,
V
GE
= 15V
V
CE
= 960V
I
C
= 60A
I
C
= 30A
Fig. 16. Inductive Turn-off
Switching Times vs. Collector Current
100
150
200
250
300
350
400
450
15 20 25 30 35 40 45 50 55 60
I
C
- Amperes
t
f
- Nanoseconds
50
100
150
200
250
300
350
400
t
d
(
off
)
- Nanoseconds
t
f
t
d(off)
- - - -
R
G
= 5
, V
GE
= 15V
V
CE
= 960V
T
J
= 125ºC
T
J
= 25ºC
«so Ir- Nanosewnds m: m: he Nanasecands so 10 IXVS Reserves the ngm to Change mens, Test Commons, and Dxmensxons. [ye Nanasecands mo
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXGA30N120B3 IXGP30N120B3
IXGH30N120B3
IXYS REF: G_30N120B3(4A)10-06-09-A
Fig. 19. Inductive Turn-on
Switching Times vs. Collector Current
0
10
20
30
40
50
60
70
80
90
100
110
15 20 25 30 35 40 45 50 55 60
I
C
- Amperes
t
r
- Nanoseconds
8
10
12
14
16
18
20
22
24
26
28
30
t
d
(
on
)
- Nanoseconds
t
r
t
d(on)
- - - -
R
G
= 5
, V
GE
= 15V
V
CE
= 960V
T
J
= 125ºC, 25ºC
Fig. 20. Inductive Turn-on
Switching Times vs. Junction Temperature
10
30
50
70
90
110
130
25 35 45 55 65 75 85 95 105 115 125
T
J
- Degrees Centigrade
t
r
- Nanoseconds
14
16
18
20
22
24
26
t
d
(
on
)
- Nanoseconds
t
r
t
d(on)
- - - -
R
G
= 5
, V
GE
= 15V
V
CE
= 960V
I
C
= 30A
I
C
= 60A
Fig. 18. Inductive Turn-on
Switching Times vs. Gate Resistance
0
20
40
60
80
100
120
140
160
180
5 7 9 11 13 15 17 19 21 23 25
R
G
- Ohms
t
r
- Nanoseconds
14
18
22
26
30
34
38
42
46
50
t
d
(
on
)
- Nanoseconds
t
r
t
d(on)
- - - -
T
J
= 125ºC, V
GE
= 15V
V
CE
= 960V
I
C
= 30A
I
C
= 60A
IXYS A Lillelluse Tecnnumgy
Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently
evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for,
and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.